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This article presents a generic theory for the behavior and performance of hy-
brid carrier synchronization loops, i.e., loops composed of a combination of discrete
and suppressed carrier types, and evaluates their impact on the error probability
performance of a phase-shift-keyed (PSK) communication system. Since hybrid
loops are characterized by two not necessarily equiprobable lock points (one at
zero phase error and one at 180-deg phase error), it is necessary to properly take
this phenomenon into account in predicting hybrid loop performance. As such,
a new form of solution for the phase error probability density is proposed based
on the solution of the Zakai equation. Using this mathematical model, the mean-
squared phase error of the hybrid loop is derived and numerically compared with
results obtained from a computer simulation. Two methods of resolving the inherent
180-deg phase ambiguity associated with using a hybrid loop for carrier synchroniza-
tion are discussed, and the corresponding average error probability performances of
an associated PSK system are evaluated.

I. Introduction

In the design of many coherent communication systems that transmit data in the form of phase
modulation on a carrier, a residual carrier component exists by virtue of the fact that the modulation
angle is chosen to be other than 90 deg. Ordinarily in such systems, carrier phase synchronization is
achieved by locking a phase-locked loop (PLL) to the residual carrier component of the received signal.
Since, however, the residual carrier and data-modulated sidebands are coherently related, it is possible
to exploit this coherence to improve the phase synchronization process. The resulting design takes the
form of a hybrid carrier tracking loop in that its error signal is a hybrid of those produced by discrete
carrier (PLL) and suppressed-carrier (Costas) tracking loops. In fact, it quite easily can be shown that
such a closed-loop structure is motivated by considering the problem of finding the maximum a posteriori
(MAP) estimator of carrier phase for a residual carrier, phase-shift-keyed (PSK) modulated signal. By
motivation we mean that the error signal in the closed-loop configuration is derived from the derivative
of the likelihood function in the neighborhood of the MAP estimate.

The notion of such a hybrid tracking loop was first presented in [1]. However, no performance results
were given there, and the discussion was limited to a derivation of the loop equation of operation and
equations for the probability density function of the phase error and the nth moment of the first-slip time.
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Many years later, an all-digital technique for the coherent demodulation of a residual carrier signal with a
biphase modulated square-wave subcarrier was considered [2]. Embedded in this technique was a carrier
phase synchronization scheme that exploited the power in the data-bearing signal component as well as
that in the residual carrier. In principle, the error signal generated by a Costas loop operating on the
subcarrier-demodulated data-bearing signal component was combined with (added to) that generated
by a PLL operating on the residual carrier signal component to produce an overall improvement in
mean-square phase error performance. In characterizing the performance of such a hybrid loop, the
authors of [2] made certain simplifying assumptions that in certain circumstances do not adequately
predict this performance. The purpose of this article is to present a generic theory for the behavior and
performance of hybrid carrier synchronization loops (the specific configuration suggested in [2] as well as
more general forms) and to evaluate their impact on the error probability performance of an associated
PSK communication system.

II. Analysis of the Hybrid Loop Operation

Consider the hybrid tracking loop illustrated in Fig. 1 for a residual carrier signal with a biphase-
modulated square-wave subcarrier. The mathematical form of the received signal that serves as the input
to this loop is

r(t) =
√

2Pt sin (ωct+ θmd(t)Sq(ωsct)) + n(t) (1)

where Pt is the total signal power; θm is the modulation angle; d(t) is a binary random data waveform
with rectangular pulse shape that takes on values ±1 at the bit rate 1/Tb; Sq(ωsct) is a unit square-
wave subcarrier with radian frequency ωsc; ωc is the carrier radian frequency; and n(t) is additive white
Gaussian noise with single-sided power spectral density N0 W/Hz. In terms of the power in the residual
carrier component, Pc = Pt cos2 θm, and the power in the data component, Pd = Pt sin2 θm, by using
simple trigonometry, Eq. (1) can be rewritten as

r(t) =
√

2Pc sinωct+
√

2Pdd(t)Sq(ωsct) cosωct+ n(t) (2)

Multiplying Eq. (2) by the in-phase (I) and quadrature (Q) reference signals, rc(t) = 2 cos (ωct− φ) and
rs(t) = −2 sin(ωct− φ), respectively, and ignoring terms involving second harmonics of the carrier gives

εc(t) = r(t)rc(t) =
√

2Pc sinφ+
√

2Pdd(t)Sq(ωsct) cosφ+ 2 cos(ωct− φ)n(t)

εs(t) = r(t)rs(t) = −
√

2Pc cosφ+
√

2Pdd(t)Sq(ωsct) sinφ+ 2 sin(ωct− φ)n(t)

 (3)

where φ is the phase error associated with the carrier demodulation process. After multiplication by the
square-wave subcarriers1 and passing through the integrate-and-dump (I&D) filters, we get2

zc
4=

∫ Tb

0

εc(t)Sq(ωsct)dt =
√

2PdTbd0 cosφ+N ′c

zs
4=

∫ Tb

0

εs(t)Sq(ωsct)dt =
√

2PdTbd0 sinφ−N ′s


(4)

1 As mentioned in the introduction, we assume that the subcarrier demodulation is perfect.
2 For simplicity, we shall assume that the I&D circuits operate on the 0th data bit in the data sequence and, thus, the
integration interval extends from 0 to Tb.

2



               

A

•( )dt0

Tb∫

εc (t )

TO
SUBCARRIER

TRACKING
LOOP

TO
LOOP

FILTER

Fig. 1.  A hybrid carrier tracking loop for BPSK signals with residual carrier.
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where N ′c and N ′s are zero-mean independent Gaussian random variables each with variance σ2
n = N0Tb,

and d0 is the 0th data bit in d(t). When multiplied, the signals in Eq. (4) produce the error signal, ed, in
the Costas loop portion of the hybrid loop. In particular,

ed
4= zczs = PdT

2
b sin 2φ+

√
2PdTbd0N

′
c sinφ−

√
2PdTbd0N

′
s cosφ−N ′cN ′s (5)

For the error signal of the PLL portion of the hybrid loop, εc(t) is passed through an I&D without
being first multiplied by the subcarrier, producing

ec
4=

∫ Tb

0

εc(t)dt =
√

2PcTb sinφ+Nc (6)

where Nc is again a zero-mean Gaussian random variable with variance σ2
n = N0Tb. In arriving at Eq. (6),

we have made the practical assumption that the subcarrier frequency is either much larger than or an
integer multiple of the data rate. Furthermore, using the same assumption, it is straightforward to show
that Nc is uncorrelated with N ′c an N ′s under the simplifying assumption that the bit timing clock and
the subcarrier are synchronous.

The total error signal is formed from a weighted sum of Eqs. (5) and (6), namely e = Aec +Bed. The
mean of e is referred to as the loop S-curve and, from Eqs. (5) and (6), is given by

g(φ) = A
√

2PcTb sinφ+BPdT
2
b sin 2φ (7)

Depending on the relative values of A and B, the loop can have stable lock points (i.e., g(φ) = 0 with
dg(φ)/dφ > 0) at φ = 0 and φ = π. In a fully suppressed carrier loop, these two lock points occur
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with equal probability, i.e., the loop is just as likely to lock at φ = 0 as it is to lock at φ = π. In the
hybrid loop, depending on the relative values of A and B, these two lock points in general will not be
equiprobable. Nonetheless, since the lock point at φ = 0 is clearly the desired one (locking at φ = π would
result in inverted data), it is essential that this lock point ambiguity be resolved prior to data detection.
The simplest (although not necessarily the best from a performance standpoint) way of resolving the
above-mentioned 180-deg carrier phase ambiguity is to employ differential encoding. We shall say more
about this later on in our discussion of error probability performance.

The slopes of the S-curve at these two lock points are

K0
4=
dg(φ)
dφ
|φ=0 = A

√
2PcTb + 2BPdT 2

b

Kπ
4=
dg(φ)
dφ
|φ=π = −A

√
2PcTb + 2BPdT 2

b


(8)

Thus, a stable lock point will exist at φ = π (i.e., Kπ > 0) whenever

2BPdT 2
B > A

√
2PcTb (9)

Since the gains A and B are design parameters and should be chosen to optimize system performance
(to be discussed shortly), it is quite possible that Condition (9) can be satisfied and, thus, one must take
this possibility into account when assessing performance.

The noise component of the total error signal, N(t), is a piecewise constant (over an interval of duration
equal to the bit time) random process. In particular, in the interval Tb ≤ t ≤ 2Tb, this noise process is
described by the random variable

N = ANc +B
[√

2PdTbd0 (N ′c sinφ+N ′s cosφ)−N ′cN ′s
]

(10)

When evaluated at φ = 0 and φ = π, this random variable has the forms

N |φ=0
4= η0 = ANc +B

[√
2PdTbd0N

′
s −N ′cN ′s

]

N |φ=0
4= ηπ = ANc +B

[
−

√
2PdTbd0N

′
s −N ′cN ′s

]
 (11)

both of which are zero mean and have equal variance, given by

σ2
N = A2N0Tb +B2

[
2PdT 2

bN0Tb + (N0Tb)2
]

= N0Tb
[
A2 +B2(2PdT 2

b +N0Tb)
]

(12)

The autocorrelation function of the piecewise constant noise process N(t) is a triangular function with
height σ2

N and width 2Tb. For a narrowband loop, i.e., one whose single-sided loop bandwidth, BL, is
much smaller than the data rate, one can approximate N(t) as a delta-correlated process [3] with a flat
single-sided power spectral density, N ′0 = 2σ2

nTb.
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Finally, assuming that the hybrid loop of Fig. 1 is closed using a loop filter with transfer function F (s)
and a voltage-controlled oscillator (VCO) with transfer function K/s, then the stochastic differential
equation describing the operation of the loop is

φ̇ = θ̇ −KF (p)e = θ̇ −KF (p)
(
A

√
2PcTb sinφ(t) +BPdT

2
b sin 2φ(t) +N(t)

)
(13)

where the dot denotes differentiation with respect to time and p is the Heaviside operator.

III. Mean-Square Phase Error Performance in the Linear Region of Loop Operation

In the linear region of loop operation, i.e., where the loop S-curve of Eq. (7) can be approximated by
the linear function K0φ or Kπ(φ − π), the conditional mean-square phase error (the conditioning is on
the loop locking at φl = 0 or π) is computed as

σ2
φ|φl=0 or π =

N ′0BLφl
K2
φl

(14)

Here, BLφl denotes the single-sided loop bandwidth that depends on whether the loop is locked at φl = 0
or π rad. The reason for this distinction is that the linear loop bandwidth is dependent on the total loop
gain, which includes as one of its components the slope of the S-curve that, from Eq. (8), is different for
the two lock points. Since, depending on which of the two lock points the loop locks to, Kφl assumes
either the value K0 or the value Kπ of Eq. (8), then, from Eq. (12), σ2

φ|φl=0 or π evaluates to

σ2
φ|φl=0 or π =

(
N0BLφl
Pc

) [
1 + γ2(2PdT 2

b +N0Tb)
](

1± γ 2Pd√
2Pc

Tb

)2

4=
(
N0BLφl
Pc

)
L−1
φl

(15)

where γ 4= B/A is the ratio of the gains3 in the two arms of the hybrid loop that contribute to the total
error signal, where the plus sign in the denominator is associated with the lock point at φl = 0 and the
minus sign is associated with the lock point at φl = π. Also, in Eq. (15), Lφl is a loop performance
parameter that represents the behavior of the mean-square phase error of the hybrid loop relative to that
of a conventional PLL.

The conditional effective loop signal-to-noise ratio (SNR) of the hybrid loop, ρeff |φl=0 or π, is defined
as the reciprocal of Eq. (15). Note that when γ = 0, i.e., only the discrete carrier component of the input
signal contributes to the hybrid loop error signal, there is no lock point at φ = π and ρeff |φl=0 = ρPLL,
where ρPLL

4= Pc/N0BL0 is the loop SNR of a PLL. At the other extreme, when γ = ∞, i.e., only the
suppressed carrier component of the input signal contributes to the hybrid loop error signal, in which
case equiprobable lock points occur at φ = 0, π and

3 Note from Condition (9) that γ is not dimensionless. In particular, it has units of (volt-sec)−1.
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ρeff |φl=0,π =
(

Pd
N0BL0

) [
2Rd

2Rd + 1

]
4=

Pd
N0BL0

SL = ρCostas

Rd =
PdTb
N0

BL0 = BLπ


(16)

which is precisely what one would obtain by tracking a suppressed carrier signal with power Pd using an
I–Q Costas loop [3]. In Eq. (16), SL denotes the squaring loss of the I–Q Costas loop [3] that results from
the presence of signal-times-noise (S ×N) and noise-times-noise (N ×N) components in the loop error
signal [see Eq. (5)].

From the standpoint of phase tracking, it is desirable to choose γ so as to minimize σ2
φ|φl=0 or π of

Eq. (15) or equivalently to maximize ρeff |φl=0 or π. Assuming that the loop locks at φ = 0 (the desired
lock point), i.e., the plus sign in the denominator of Eq. (15), then differentiating L0 with respect to γ
and equating the result to zero results in

γopt|φl=0
4= γopt0 =

(√
2PcTb

)−1

SL (17)

Substituting Eq. (17) into Eq. (15) gives

ρeff |φl=0
4= ρ0 =

(
Pc

N0BL0

) (
1 +

Pd
Pc
SL

)
=

Pc
N0BL0

+
Pd

N0BL0
SL

4= ρPLL + ρCostas (18)

This result corresponds to the performance measure used in [2].

With the gain ratio chosen as in Eq. (17), if the loop were to lock at φ = π, then the effective loop
SNR would be

ρeff |φl=π
4= ρπ =

(
Pc

N0BLπ

) (
−1 +

PdSL
Pc

)2 (
1 +

PdSL
Pc

)−1

(19)

Also note that with the gain ratio chosen as in Eq. (17), the condition for the existence of a stable lock
point at φ = π, as given in Condition (9), becomes

Pc
Pd

= cot2 θm < SL → tan θM >

√
2Rd + 1

2Rd
(20)

or, in terms of the component loop SNRs,

ρPLL < ρCostas (21)

Had we elected to optimize the gain ratio based on the assumption that the loop locks at φ = π, then the
optimum value of γ would be the negative of Eq. (17) and the results in Eqs. (18) and (19) would simply
switch with each other.
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The average mean-square phase error performance of the loop in the linear region of operation can be
computed from Eq. (14) as

σ2
φ = P0σ

2
φ|φl=0 + Pπσ

2
φ|φl=π

4= P0σ
2
0 + Pπσ

2
π (22)

where P0 and Pπ respectively denote the probabilities that the loops lock at the two possible loop lock
points, σl = 0 and σl = π.4 For the optimum gain ratio of Eq. (17), i.e., that which minimizes σ2

0 , the
average mean-square phase error of Eq. (22) would be evaluated as

σ2
π = P0

(
Pc

N0BL0

)−1 (
1 + SL tan2 θm

)−1
+ Pπ

(
Pc

N0BLπ

)−1
[(
−1 + SL tan2 θm

)2(
1 + SL tan2 θm

) ]−1

(23)

For a first-order loop, i.e., F (s) = 1, we would have

BL0 =
K0K

4

BLπ =
KπK

4

 (24)

where K0 and Kπ are defined in Eq. (8). Thus, Eq. (23) can be written alternatively as

σ2
φ = P0

(
Pc

N0BL0

)−1 (
1 + SL tan2 θm

)−1
+ Pπ

(
Pc

N0BL0

)−1 (
−1 + SL tan2 θm

)−1
(25)

The (unconditional) effective loop SNR of the hybrid loop, ρeff , is defined as the reciprocal of Eq. (25).
What remains is to evaluate P0 and Pπ. Before performing these evaluations, however, we first must
characterize the probability density function (pdf) of the phase error in the nonlinear region of operation
and its behavior in the linear region around the two lock points.

IV. Probability Density Function of the Loop Phase Error

For the stochastic differential equation of Eq. (13) and for a first-order loop (also approximately for
a second-order loop), the unconditional pdf of the phase error p(φ) (i.e., the solution to the steady-state
Fokker–Planck equation) is given by5

p(φ) = C exp
{
−

(
K2

0

N ′0BL0

) ∫
gn(φ)dφ

}
(26)

where we have normalized the loop S-curve of Eq. (7) in terms of a unit slope (at φ = 0) nonlinearity,
i.e., g(φ) 4= K0gn(φ) with K0 as defined in Eq. (8), and C is a normalization constant chosen to assure
that p(φ) has unit area over the interval −π ≤ φ ≤ π. Using Eqs. (7) and (8) and the optimum gain ratio
of Eq. (17) in Eq. (26), we get

4 Later on we shall discuss how P0 and Pπ can be evaluated.

5 The generic form of Eq. (18), which applies to a synchronous control loop, can be found in [5].
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p(φ) = C exp
{(

Pc
N0BL0

) (
cosφ+ 0.25SL tan2 θm cos 2φ

)}

= C exp {ρPLL cosφ+ 0.25ρCostas cos 2φ} , |φ| ≤ π (27)

This then represents the pdf of the loop phase error when the loop is optimized to maximize ρeff
corresponding to a locked state at φ = 0. When Condition (9) is satisfied, i.e., a stable lock point exists
at φ = π, then the pdf of Eq. (27) will be bimodal.

Under the appropriate conditions (see the Appendix), the pdf of Eq. (27) also can be expressed as a
weighted sum of two conditional pdf’s, p0(φ) and pπ(φ), each distributed on the interval −π ≤ φ ≤ π,
which respectively represent the pdf of the loop phase error φ conditioned on the two possible loop lock
points φl = 0 and φl = π. The appropriate representation is

p(φ) = P0p0(φ) + Pπpπ(φ) (28)

where P0 and Pπ are as previously defined. Unfortunately, one cannot obtain p0(φ) and pπ(φ) by direct
decomposition of Eq. (27). Rather, these conditional pdf’s are obtained by numerical solution of the Zakai
equation [6], which is the Fokker–Planck equation augmented with a term dependent on the observation
(i.e., at which lock point the loop is located). The values of P0 and Pπ are also found from this approach.
The procedure is discussed in the Appendix and in more detail in Hamdan et al.6

V. Evaluation of P0 and Pπ in the Linear Region of Operation

In the linear region where the effective loop SNR is large, the modes of Eq. (28) around φ = 0 and
φ = π will tend toward Gaussian functions that, for all practical purposes, are nonoverlapping and thus,
to a good approximation, the mode around φ = 0 will correspond to P0p0(φ) and the mode around φ = π
will correspond to Pπpπ(φ). Assuming a hybrid loop whose gain ratio γ has been chosen to optimize
performance around φ = 0, then expanding the argument of the exponential in Eq. (27) around φ = 0
gives

P0p0(φ) ' C exp
{
ρPLL

(
1 + 0.25SL tan2 θm

)}
exp

(
− θ2

2σ2
0

)
(29)

where

σ2
0
4=

[
ρPLL

(
1 + SL tan2 θm

)]−1
(30)

Similarly, expanding the argument of the exponential in Eq. (27) around φ = π gives

Pπpπ(φ) ' C exp
{
ρPLL

(
−1 + 0.25SL tan2 θm

)}
exp

(
− (φ− π)2

2σ2
π

)
(31)

where

6 K. Hamdan, S. Hinedi, and M. Simon, “The Steady State Behavior of Randomly Perturbed Dynamical Systems Near
Stable Equilibria,” submitted to IEEE Transactions on Information Theory.
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σ2
π
4=

[
ρPLL

(
−1 + SL tan2 θm

)]−1
(32)

To evaluate the normalization constant C, we make use of Eq. (21), in which case

1 =
∫ π

−π
p(φ)dφ '

∫ ∞
−∞

P0p0(φ)dφ+
∫ ∞
−∞

Pπpπ(φ)dφ

= C

[√
2πσ2

0 exp
{
ρPLL(1 + 0.25SL tan2 θm)

}
+

√
2πσ2

π exp
{
ρPLL(−1 + 0.25SL tan2 θm)

}]
(33)

or

C =
[√

2π exp
{
0.25ρPLLSL tan2 θm

}
(σ0 exp{ρPLL}+ σπ exp{−ρPLL})

]−1

(34)

Combining Eqs. (29) and (31) gives

P0p0(φ) '
[
1 +

(
σπ
σ0

)
exp(−2ρPLL)

]−1 exp
(
− φ2

2σ2
0

)
√

2πσ2
0

Pπpπ(φ) '
[
1 +

(
σπ
σ0

)
exp(2ρPLL)

]−1 exp
(
− (φ− π)2

2σ2
π

)
√

2πσ2
π


(35)

Had we linearized the loop equation of Eq. (13) around φ = 0 by setting sinφ = φ and sin 2φ = 2φ right
from the start, then the steady-state solution for the pdf p(φ) would be precisely

p(φ) = p0(φ) =
exp

(
− φ2

2σ2
0

)
√

2πσ2
0

(36)

Similarly, had we linearized the loop equation of Eq. (13) around φ = π by setting sinφ = φ − π and
sin 2φ = 2(φ− π) right from the start, then the steady-state solution for the pdf p(φ) would be precisely

p(φ) = pπ(φ) =
exp

(
− (|φ| − π)2

2σ2
π

)
√

2πσ2
π

(37)

Thus, comparing Eqs. (36) and (37) with Eq. (35) gives the desired results,

P0 =
[
1 +

(
σπ
σ0

)
exp(−2ρPLL)

]−1

Pπ =
[
1 +

(
σ0

σπ

)
exp(2ρPLL)

]−1


(38)
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or, using Eqs. (30) and (32),

P0 =

1 +

√
1 + SL tan2 θm
−1 + SL tan2 θm

exp
(
− 2Pc
N0BL0

)−1

Pπ =

1 +

√
−1 + SL tan2 θm
1 + SL tan2 θm

exp
(

2Pc
N0BL0

)−1


(39)

Note from Eq. (39) that P0 + Pπ = 1, as should be the case.

Figures 2(a) and 2(b) are plots of P0, as determined from Eq. (39), versus Pt/N0 in dB-Hz for fixed
values of θm and BL0 and a data rate of 1/Tb. In terms of these parameters, the loop SNR Pc/N0BL0

and squaring loss SL are obtained from

SL =
2Rd

1 + 2Rd

Rd =
(
Pt
N0

) (
1
Tb

)−1

sin2 θm

Pc
N0BL0

=
(
Pt
N0

) (
1
BL0

)
cos2 θm


(40)

Shown in Table 1 is a comparison of numerical results for P0 and Pπ obtained from the approach taken in
the Appendix with those obtained from the linear approach as given in Eq. (39). We observe that, for the
three sets of parameters selected for the comparison [which are particular cases of those used to obtain
Figs. 2(a) and 2(b)], there is reasonable agreement between the values of P0 and Pπ obtained from the
two different approaches. The discrepancy that exists can be attributed to the fact that the assumption
of linear region of operation is not completely justified for the parameter sets chosen. Also note that the
values of P0 and Pπ obtained from the approach in the Appendix do not precisely sum to unity because
of the limitation in the accuracy associated with the numerical solution of the Zakai equation.

Figures 3(a) through 3(c) illustrate the behavior of the pdf p(φ) as the loop SNR varies from high to
low values. Four sets of results are shown in each of these figures. The first set of results is based on the
decomposition given in Eq. (28), where the conditional pdf’s and the probability weights P0 and Pπ are
obtained from the approach taken in the Appendix. The second set of results corresponds to the same
decomposition, but the conditional pdf’s and probability weights P0 and Pπ are obtained from the linear
region approximations given in this section, in particular Eqs. (36) through (39). The third set of results
corresponds to the Fokker–Planck solution given in Eq. (27). Finally, as a check on the validity of the
analytical models, results obtained from a computer simulation of the actual hybrid loop of Fig. 1 are
superimposed on the previous three sets of analytical results.7

7 In the case of Fig. 3(c), simulation results could not be obtained, since the loop had difficulty maintaining lock at such a
low loop SNR.
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VI. Mean-Square Phase Error Performance in the Nonlinear Region of Loop
Operation

To assess the mean-square phase error performance of the loop in the nonlinear region of operation, it
is necessary to determine the conditional pdf’s of the loop phase error, φ, conditioned on the two possible
loop lock points, φl = 0 and φl = π, namely, p0(φ) and pπ(φ). Once these have been found, then the
average mean-square phase error in the nonlinear region of loop operation is given by

σ2
φ = P0

∫ π

−π
φ2p0(φ)dφ+ Pπ

∫ π

−π
(|φ| − π)2 pπ(φ)dφ 4= P0σ

2
0 + Pπσ

2
π (41)

11



   

–3.1416 –1.5708 0 1.5708 3.1416

PHASE ERROR, rad

0.0

0.2

0.4

0.6

0.8

P
D

F

ZAKAI
APPROXIMATION

FOKKER–PLANCK

HISTOGRAM
(SIMULATED)

LINEAR
APPROXIMATION

(a)

0.00

0.25

0.50

0.75

1.00

P
D

F

0.4

0.3

0.2

0.1

0.0

Fig. 3.  A comparison of the phase error probability density functions
based on linear and nonlinear theories:  (a) B L 0 = 1 Hz, 1/T b = 2 kHz,
P t /N 0 = 20 dB-Hz, θ m = 7.7π /16; (b) B L 0 = 10 Hz, 1/T b = 100 Hz, P t /N 0 =
20 dB-Hz, θ m = 7π /16; and (c) B L 0 = 10 Hz, 1/T b = 1000 Hz, P t /N 0 =
20 dB-Hz, θ m = 7π /16.

(c)

(b)

P
D

F

12



                

Table 1. A comparison of the probabilities of locking at φ= 0 and φ= π
based on linear and nonlinear theories.

Parameter set P0|linear Pπ |linear P0|Zakai Pπ |Zakai

BL0 = 1 Hz 0.658082 0.341918 0.644724 0.321096

1/Tb = 2 kbps

Pt/N0 = 20 dB-Hz

θm = 7.7π/16

(ρeff = 9.604 dB)

BL0 = 10 Hz 0.668409 0.331591 0.650 0.316

1/Tb = 100 bps

Pt/N0 = 20 dB-Hz

θm = 7π/16

(ρeff = 8.087 dB)

BL0 = 10 Hz 0.625013 0.374987 0.61186 0.34433

1/Tb = 1 kbps

Pt/N0 = 20 dB-Hz

θm = 7π/16

(ρeff = 1.91453 dB)

Implicit in Eq. (41) is the assumption that the receiver is able to determine when the loop is locked
correctly at zero phase error and when it is incorrectly locked at π rad. As suggested in the introduction,
a means of accomplishing this is to periodically employ a synchronization word in the data stream to
detect when the data have been inverted. Also, in the limit of large SNR where σ2

0 and σ2
π are given by

Eqs. (30) and (32), respectively, Eq. (41) gives the same result as Eq. (22).

Although Eq. (41) represents the behavior of the loop in the nonlinear region of operation, it is
convenient to define an effective average loop SNR, ρave, equal to the reciprocal of σ2

φ, which is analogous
to what was done in the linear region. In general, ρave defined this way will be smaller than ρeff based
on the linear loop analysis, i.e., the reciprocal of Eq. (22).

For the sets of parameter values corresponding to Figs. 3(a) and 3(b), Table 2 compares ρave obtained
from Eq. (41) with numerical results obtained from a computer simulation of the loop as well as with
several different loop SNRs, in particular, ρPLL, ρCostas, ρ0 [see Eq. (18)], and ρeff [see the reciprocal
of Eq. (25)]. In the case of the simulation, the values are obtained by measuring the mean-square phase
error and then taking its reciprocal. We observe that the simulation results agree best with ρave, as one
would expect. Also, we remind the reader that the values of ρ0 given in the table would be those obtained
from the results reported in [2].

VII. Error Probability Performance

A. Phase Ambiguity Resolution Using Differential Encoding/Decoding

One method of resolving the 180-deg ambiguity associated with the hybrid tracking loop locking at
π rad is to use a combination of differential encoding and differential decoding, as is done for conventional
Costas loops that exhibit the same phase ambiguity. For a binary phase-shift-keyed (BPSK) system with
differential encoding/decoding, the conditional (on the phase error) bit-error probability is given by [4]

Pb(E;φ) = erfc
(√

Rd cosφ
) [

1− 0.5 erfc
(√

Rd cosφ
)]

(42)
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Table 2. A comparison of loop SNRs.

ρave, dB ρsimulation, dB ρ0 = ρPLL ρeff , dB
ρPLL, dB ρCostas, dB

Parameter set [reciprocal of [reciprocal of +ρCostas, dB [reciprocal of
[Eq. (18)] [Eq. (18)]

Eq. (41)] measured σ2
φ] [Eq. (18)] Eq. (25)]

BL0 = 1 Hz 8.247 8.447 −4.602 9.557 9.721 9.604

1/Tb = 2 kbps

Pt/N0 = 20 dB-Hz

θm = 7.7π/16

BL0 = 10 Hz 5.881 6.180 −4.195 8.014 8.267 8.087

1/Tb = 100 bps

Pt/N0 = 20 dB-Hz

θm = 7π/16

where erfc x denotes the complementary error function with argument x. Note that

Pb(E;φ) = Pb(E;φ+ π) (43)

which clearly identifies the fact that the 180-deg ambiguity has been resolved, i.e., it is not necessary for
the receiver to determine when the loop is locked at φ = 0 and when it is locked at φ = π. Stated another
way, since

Pb

(
E;

π

2
+ φ

)
= Pb

(
E;

π

2
− φ

)
, 0 ≤ φ ≤ π

2
(44)

and since Pb(E;φ) ≤ 0.5 for 0 ≤ φ ≤ π/2, we see that the conditional error probability can never exceed
0.5 in the interval −π ≤ φ ≤ π. In other words, by folding the conditional error probability around
0.5 at φ = π/2, the differential encoding/decoding operation circumvents the need to detect the 180-deg
ambiguity and invert the detected data. Despite the fact that the ambiguity has been resolved, the
average error probability performance depends on the behaviors of the loop in the neighborhoods of both
lock points, which, as we have seen from previous discussions, are different. In particular, the average
bit-error probability is computed by averaging Eq. (42) over the pdf in Eq. (27), namely,

Pb(E) =
∫ π

−π
Pb(E;φ)p(φ)dφ (45)

which, in view of Eq. (43), is equivalent to

Pb(E) =
∫ π/2

−π/2
Pb(E;φ)(p(φ) + p(φ+ π))dφ (46)

Note that when θm = 90 deg, i.e., Pc = 0(ρPLL = 0), then from Eq. (27), p(φ) = p(φ + π) and Eq. (46)
simplifies to

Pb(E) = 2
∫ π/2

−π/2
Pb(E;φ)p(φ)dφ (47)
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which is a well-known result for average error probability performance of BPSK systems employing
suppressed-carrier tracking.

The average error probability as computed from Eq. (45) depends on three parameters, namely, Rd,
ρPLL, and ρCostas. These parameters can in turn be related to the modulation angle, θm; the total
power-to-noise ratio, Pt/N0; the data rate, 1/Tb; and the loop bandwidth, BL0, via

Rd =
(
PtTb
N0

)
sin2 θm

ρPLL =
(

Pt
N0BL0

)
cos2 θm

ρCostas =
(

Pt
N0BL0

)
SL sin2 θm


(48)

Figure 4 is a plot of Pb(E) versus θm for BL0 = 1 Hz, 1/Tb = 100 bps, and two values of Pt/N0, namely,
25 and 30 dB-Hz. We observe that, from the standpoint of minimizing average bit-error probability, the
optimum choice of modulation angle is θm = 90 deg, i.e., suppressed-carrier tracking with an I–Q Costas
loop. We remind the reader that this conclusion is based on designing (optimizing) the hybrid loop to
minimize mean-square phase error at the desired lock point, φ = 0.

Suppose that instead we were to design the loop (i.e., choose the gain ratio, γ) to directly minimize
the average bit-error probability performance of the receiver. To see how this is done, we first rewrite the
pdf of the loop phase error in terms of this gain ratio rather than in the form of Eq. (27), which assumes
the optimum γ of Eq. (17). In particular, using Eq. (26) together with Eqs. (8) and (12), we get

p(φ) = C exp
{
ρPLL

(
1 + γ′ tan2 θmSL
1 + γ′2 tan2 θmSL

) (
cosφ+ 0.25γ′ tan2 θmSL cos 2φ

)}
, |φ| ≤ π (49)

where we have normalized the gain ratio as

γ′
4= γ

(√
2PcTb
SL

)
(50)

Note that, in accordance with Eq. (17), choosing γ′ = 1 for each value of θm would result in the same
error-probability performance as shown in Fig. 4. Figure 5 is a plot of average bit-error probability versus
γ′ for several values of θm between 0 and π/2 for BL = 10 Hz, 1/Tb =10 bps, and Pt/N0 = 20 dB-Hz. We
observe that, in each case, the optimum (in the sense of minimum error probability) value of γ′ is equal
or very close to unity. Thus, for all practical purposes, the choice of hybrid loop gains to optimize average
bit-error probability performance is the same as that corresponding to minimum mean-square phase error
at the correct lock point. This result is not at all obvious at the outset due to the fact that the average
error-probability performance depends on the loop performance both in the region around φ = 0 and
around φ = π. We also observe from Fig. 5 that the sensitivity (or lack thereof) of the error-probability
performance to the optimum choice of γ′ shifts as θm varies between 0 and π/2. In particular, for small
values of θm, the performance is virtually insensitive to values of γ′ < γ′opt, whereas for large values of
θm, the same insensitivity occurs for values of γ′ > γ′opt.
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B. Phase Ambiguity Resolution Using a Synchronization Word

Here we assume that the receiver is able to determine when the loop is correctly locked at zero phase
error and when it is incorrectly locked at π rad. We assume here that this resolution between the two lock
points is accomplished perfectly. Then, to compute the average bit-error probability for the hybrid loop
for this scenario, one invokes the conditional error probability P (E;φ) = 0.5 erfc

(√
Rd cosφ

)
when the

loop is locked at zero, i.e., the phase error pdf is governed by P0(φ), and the conditional error probability
1− P (E;φ) = 1− 0.5 erfc

(√
Rd cosφ

)
= P (E;φ± π) (invert the detected data) when the loop is locked

at π rad, i.e., the phase error pdf is governed by pπ(φ). In mathematical terms,

P (E) = P0

∫ π

−π
0.5 erfc

(√
Rd cosφ

)
p0(φ)dφ+ Pπ

∫ π

−π

[
1− 0.5 erfc

(√
Rd cosφ

)]
pπ(φ)dφ (51)

For the special case of a 90-deg modulation angle, P0 = Pπ = 1/2 and p0(φ) = pπ(φ± π), in which case,
Eq. (51) simplifies to

P (E) =
∫ π

−π
0.5 erfc

(√
Rd cosφ

)
p0(φ)dφ =

∫ π

0

erfc
(√

Rd cosφ
)
p0(φ)dφ (52)

Note that, in principle, the result in Eq. (52) differs from what most researchers have used in the past to
evaluate the average error probability performance of BPSK systems with Costas loop synchronization,
the latter being given by (see [4], Chapter 6, for example)

P (E) =
∫ π/2

−π/2
erfc

(√
Rd cosφ

)
p(φ)dφ (53)

where p(φ) is, as before, the pdf obtained by solution of the Fokker–Planck equation, namely, Eq. (26) or
Eq. (27). To see how Eqs. (52) and (53) differ, we substitute Eq. (28) into Eq. (53), which gives

P (E) =
∫ π/2

0

erfc
(√

Rd cosφ
)
p0(φ)dφ+ 2

∫ π

π/2

[
1− 0.5 erfc

(√
Rd cosφ

)]
p0(φ)dφ (54)

Rewriting Eq. (52) as

P (E) =
∫ π/2

0

erfc
(√

Rd cosφ
)
p0(φ)dφ+

∫ π

π/2

erfc
(√

Rd cosφ
)
p0(φ)dφ (55)

we see that the difference lies in the way the conditional error probability is handled in the region
π/2 ≤ φ ≤ π. Since in this region 0.5 erfc

(√
Rd cosφ

)
≤ 1−0.5 erfc

(√
Rd cosφ

)
, then P (E) as computed

from Eq. (55) will be larger than that value computed from Eq. (54) (the previously used result). For
a large loop SNR, the contribution of the second terms in Eqs. (54) and (55) will be small and, thus,
this discrepancy will be unnoticeable, which is perhaps the reason it has not previously been identified in
practice. Nevertheless, from a theoretical standpoint, it is necessary to point out the difference between
the two results.
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VIII. Conclusions

We have shown that by making use of the total power available in the received signal for purposes of
carrier synchronization, a hybrid loop can provide improved tracking and average bit-error probability
performance relative to that achieved by the more conventional Costas loop or phase-locked loop. In
assessing the performance of the system, however, one must take into account the fact that, for val-
ues of modulation angle larger than a certain critical value, the hybrid loop can lock at both 0- and
180-deg phase error with probabilities dependent on the modulation angle itself. As such, one must ei-
ther employ differential encoding/decoding or provide a method for resolving this phase ambiguity, such
as the inclusion of a unique synchronization word in the data stream. It is also important to properly
choose the relative gains in the two arms (discrete carrier and sideband) of the hybrid loop since, de-
pending on the value of the modulation angle, the loop performance can be quite sensitive to these gain
settings. Finally, we point out that the actual loop SNR for the hybrid loop, as measured by computer
simulation and analytically modeled in this article, is not equal to the sum of the SNRs for the PLL and
the Costas loop components, as heretofore suggested in [2].
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Appendix

Steady-State Conditional PDFs

Following the treatment in [6], in this appendix we are primarily interested in synchronous control
loops that satisfy stochastic differential equations (SDEs) of the form

dφ(t) = −f(φ)dt+ dB(t), φ(0) = φ0 (A-1)

where φ(t) is a vector8 in Rd, f(·) is a bounded continuous function from Rd into Rd where d is the order
of the loop, and B(t) is a Brownian motion process in Rd with associated power spectral matrix Q. The
initial condition φ0 is assumed to have a known pdf, p0(φ). It is well known that the pdf p(φ, t) of the
process φ(t) is the unique solution to the classical forward Kolmogorov equation (FKE):

∂

∂t
p(φ, t) = Lp(φ, t), p(φ, 0) = p0(φ) (A-2)

where L is the Fokker–Planck operator given by

Lp(φ, t) =
d∑
i=1

d∑
j=1

qij
2

∂2

∂φi∂φj
p(φ, t) +

d∑
i=1

∂

∂φi
(fi(φ)p(φ, t)) (A-3)

where qij is the (i, j) element of the matrix QQT , and fi(φ) is the ith component of the vector f(φ).
Suppose that φ(t) is observed through the observation process Y (t) given by

dY (t) = h(φ)dt+ dV (t) (A-4)

where Y (t) and V (t) are Brownian motion processes independent of B(t) and φ0, h(·) is an arbitrary
function, which, along with its derivatives, is a bounded continuous function from Rd to Rk with k ≤ d.
For simplicity, we assume that V (t) has unit power spectral density. The conditional pdf for the process
φ(t) conditioned on the observation process {Y (s) : 0 ≤ s ≤ t}, which we denote by pY (φ, t), is the unique
solution of the Zakai equation:

dpY (φ, t) = LpY (φ, t)dt+ pY (φ, t)hT (φ)dY (t), p(φ, 0) = p0(φ) (A-5)

where the superscript T denotes the transpose operation. A derivation of the Zakai equation is given in
[7]. One numerical technique for solving Eq. (A-5), the splitting-up method [8], is briefly summarized
below. We assume a discrete observation process of the form

z(n) = h(φ(n)) + v(n) (A-6)

where z(n) is a discrete representation of dY (t), and v(n) is white noise with unit power spectral matrix.
First, we use a uniformly spaced finite-difference scheme on a finite grid to discretize the spatial domain.
We obtain a system of stochastic differential equations of the form

8 To maintain simplicity, we do not introduce a special notation (such as boldface) for vectors.
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dpY (t) = LhpY (t)dt+BhpY (t)dY (t) (A-7)

where pY (t) = (p1
Y (t), · · · , pNY (t)) with piY (t) denoting the conditional pdf at grid point φi; Lh is the

matrix representation of the discretized operator L; and Bh is a diagonal matrix with h(φi) as its diagonal.
The splitting-up algorithm (using a Euler backwards scheme) for the numerical integration of the finite
dimensional Zakai equation, Eq. (A-7), is given by

(I −∆t Lh)pn+1 = Ψn+1pn (A-8)

where pn = pY (tn), and Ψn+1 is a diagonal matrix with diagonal elements

ψi = exp
(

∆t
2

(z(n+ 1) + z(n))h(φi)−
∆t
2
h2(φi)

)
(A-9)

and ∆t is the step size for the Euler scheme. Numerical results for a hybrid phase-locked loop are analyzed
in Hamdan et al.9

For simplicity, we now consider Eq. (A-1) in R1, which in our application corresponds to a first-order
loop. We assume that the corresponding deterministic system has m asymptotically stable equilibrium
points, {φl1, · · · , φlm}. That is, f(φlk) = 0 and f ′(φlk) > 0 for k = 1, · · · ,m. Let p(φ) be the steady-
state solution to the associated FPE LP = 0. In steady state, we assume that the expected transition
time from one (neighborhood) of a stable equilibrium point to another is large enough such that the
notion of a steady-state conditional pdf has physical meaning. In this case, we may define the function
pk(φ) = p(φ|φ ∈ N(φlk)), where N(φlk) is a neighborhood of φlk. As a result, there exist constants
P1, · · · , Pm such that

p(φ) =
m∑
k=1

Pkpk(φ) (A-10)

where Pk is the probability of being in N(φlk) in steady state. Equation (31) is an example of such for
m = 2. We now follow the treatment in Hamdan et al., where an approximate elliptic partial differential
equation for pk(φ) is obtained.10 To this end, consider the observation process defined by Eq. (A-6). The
corresponding difference equation for the conditional pdf (with the dependence on k suppressed) is given
by Eq. (A-8).

Let us assume that, for some n sufficiently large, we observe the system in N(φlk) (i.e., the phase is
locked at the point φlk). Thus, we may use the approximation

φ(n) = φlk + ξ(n), z(n) = h(φlk + ξ(n)) + v(n)

where ξ(n) is a random deviation of the state from the locked position, and v(n) is the sequence of mea-
surement noise, assumed to be an independent identically distributed (i.i.d.) sequence. In particular, the
variance of the measurement noise is assumed to be of the order ∆(t) (o(∆t)) uniformly in n. Expanding
the observation process about ξ(n), we obtain

9 K. Hamdan, S. Hinedi, and M. Simon, op cit.

10 Ibid.
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∆t
2

(z(n+ 1) + z(n)) = ∆t h(φlk) + λn (A-11)

where

λn =
∆t
2

(h′(φlk)(ξ(n) + ξ(n+ 1)) + v(n+ 1) + v(n)) + o
(
∆tξ(n)2

)
Substituting Eq. (A-11) into Eq. (A-9) and expanding the exponential term, Eq. (A-8) becomes

(I −∆t Lh) pn+1 = Apn + λnApn (A-12)

where I is the identity matrix and A is a diagonal matrix with diagonal entries

exp
(

∆t h(φlk)h(φi)−
∆t
2
h2(φi)

)

Under some mild conditions, it is shown in Hamdan et al. that if for n arbitrarily large, the system
remains locked at the equilibrium point φlk, then λn (in steady state) converges to a random variable λ
with variance o(∆t).11 By letting n approach infinity in Eq. (A-12), we obtain the following equation for
the steady-state conditional pdf:

A−1 (I −∆t Lh −A) p = λp (A-13)

where λ is a random variable with o(∆t) variance. By letting ∆t = 1, we obtain the infinite dimensional
analogue of the matrix equation, Eq. (A-13):

g(φ, φlk)Lp(φ) + (1 + λ− g(φ, φlk)) p(φ) = 0 (A-14)

where L is the Fokker–Planck operator defined in Eq. (A-3), and

g(φ, φlk) = exp
(

1
2
h2(φ)− h(φlk)h(φ)

)
(A-15)

11 Ibid.
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